首页 | 本学科首页   官方微博 | 高级检索  
     

田间原位光谱的鲜烟叶成熟度判别模型的研究
作者姓名:刁航  吴永明  杨宇虹  欧阳进  李军会  劳彩莲  徐兴阳
作者单位:1. 中国农业大学现代精细农业系统集成教育部重点实验室,北京 100083
2. 云南省烟草公司昆明市公司,云南 昆明 650051
3. 云南省烟草农业科学研究院,云南 昆明 650021
基金项目:国家自然科学基金项目(61144012),中国烟草总公司云南省公司项目(2013YN17)
摘    要:在田间原位对烟叶成熟度进行判别,能够有效减少由于对成熟度判断错误而导致的烟叶损失率升高、质量下降的问题,而传统的人眼结合叶龄的田间成熟度判别方法缺少客观性,因此提出采用光谱特征参数结合支持向量机的方法对田间原位烟叶成熟度进行判别。以专家评定并在田间原位进行测量的五个成熟度等级共351个烟叶反射光谱作为试验样品,五个成熟度等级分别为M1,M2,M3,M4,M5。通过对反射光谱的分析发现,不同成熟度烟叶的光谱在可见光波段能够得到区分,而在近红外波段区分不明显,因此在可见光波段进行分析建模。分别采用可见光范围内的连续光谱(350~780 nm)、特征波段(496~719 nm)、光谱特征参数(绿峰幅值、绿峰位置、红边幅值、蓝边幅值、红边面积、蓝边面积、红边位置、蓝边位置)作为输入变量,采用支持向量机方法(supportvector machine,SVM)建立烟叶成熟度判别模型。结果表明,应用可见光光谱特征参数作为输入变量所建立的模型的正确识别率达到98.85%,而应用可见光连续谱、可见光特征波段作为输入变量的正确识别率分别为90.80%和93.10%。因此使用可见光光谱特征参数建立支持向量机的鲜烟叶成熟度判别模型对田间原位烟叶成熟度进行判别是可行的。

关 键 词:可见光谱  光谱特征参数  支持向量机  烟叶  成熟度  
收稿时间:2015-03-12
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号