首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization and Optimization of Injectable In Situ Crosslinked Chitosan-Genipin Hydrogels
Authors:Tyler R. Priddy-Arrington  Reagan E. Edwards  Claire E. Colley  Marissa M. Nguyen  Tess Hamilton-Adaire  Mary E. Caldorera-Moore
Affiliation:Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, 71272 USA
Abstract:In recent years, there has been an increased interest in injectable, in situ crosslinking hydrogels due to their minimally invasive application and ability to conform to their environment. Current in situ crosslinking chitosan hydrogels are either mechanically robust with poor biocompatibility and limited biodegradation due to toxic crosslinking agents or the hydrogels are mechanically weak and undergo biodegradation too rapidly due to insufficient crosslinking. Herein, the authors developed and characterized a thermally-driven, injectable chitosan-genipin hydrogel capable of in situ crosslinking at 37 °C that is mechanically robust, biodegradable, and maintain high biocompatibility. The natural crosslinker genipin is utilized as a thermally-driven, non-toxic crosslinking agent. The chitosan-genipin hydrogel's crosslinking kinetics, injectability, viscoelasticity, swelling and pH response, and biocompatibility against human keratinocyte cells are characterized. The developed chitosan-genipin hydrogels are successfully crosslinked at 37 °C, demonstrating temperature sensitivity. The hydrogels maintained a high percentage of swelling over several weeks before degrading in biologically relevant environments, demonstrating mechanical stability while remaining biodegradable. Long-term cell viability studies demonstrated that chitosan-genipin hydrogels have excellent biocompatibility over 7 days, including during the hydrogel crosslinking phase. Overall, these findings support the development of an injectable, in situ crosslinking chitosan-genipin hydrogel for minimally invasive biomedical applications.
Keywords:chitosan  genipin  in situ crosslinking  injectable hydrogels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号