首页 | 本学科首页   官方微博 | 高级检索  
     


IR signature of the photoionization-induced hydrophobic-->hydrophilic site switching in phenol-Arn clusters
Authors:Ishiuchi Shun-ichi  Sakai Makoto  Tsuchida Yuji  Takeda Akihiro  Kawashima Yasutake  Dopfer Otto  Müller-Dethlefs Klaus  Fujii Masaaki
Affiliation:Chemical Resources Laboratory, Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan.
Abstract:IR spectra of phenol-Arn (PhOH-Arn) clusters with n=1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus pi bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, nuOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH-Ar2 as well as cationic PhOH+-Ar have a pi-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH+-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This pi-->H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The pi-bound nuOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound nuOH band. The analysis of the picosecond IR spectra demonstrates that (i) the pi-->H site switching is an elementary reaction with a time constant of approximately 7 ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100 cm(-1)), (iii) both the position and the width of the H-bound nuOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from pi bonding to H bonding in the PhOH+-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号