首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Falsification of hybrid systems with symbolic reachability analysis and trajectory splicing
Institution:1. Carnegie Mellon University, 5000 Forbes Ave Pittsburgh, PA, USA;2. Toyota Technical Center, 1630 W. 186th, Gardena, CA, USA
Abstract:The falsification of a hybrid system aims at finding trajectories that violate a given safety property. This is a challenging problem, and the practical applicability of current falsification algorithms still suffers from their high time complexity. In contrast to falsification, verification algorithms aim at providing guarantees that no such trajectories exist. Recent symbolic reachability techniques are capable of efficiently computing linear constraints that enclose all trajectories of the system with reasonable precision. In this paper, we leverage the power of symbolic reachability algorithms to improve the scalability of falsification techniques. Recent approaches to falsification reduce the problem to a nonlinear optimization problem. We propose to reduce the search space of the optimization problem by adding linear state constraints obtained with a reachability algorithm. An empirical study of how varying abstractions during symbolic reachability analysis affect the performance of solving a falsification problem is presented. In addition, for solving a falsification problem, we propose an alternating minimization algorithm that solves a linear programming problem and a non-linear programming problem in alternation finitely many times. We showcase the efficacy of our algorithms on a number of standard hybrid systems benchmarks demonstrating the performance increase and number of falsifyable instances.
Keywords:Trajectory splicing  Falsification  Reachability analysis  Hybrid system  Safety verification  Non-linear optimization  Linear programming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号