首页 | 本学科首页   官方微博 | 高级检索  
     


Steady suspension flows into two-dimensional horizontal and inclined channels
Authors:I. Miskin  L. Elliott  D.B. Ingham  P.S. Hammond
Affiliation:

a Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, U.K.

b Schlumberger Cambridge Research Limited, P.O. Box 153, Cambridge CB3 OHG, U.K.

Abstract:
In this study a model which was developed previously is used to theoretically investigate the steady flow of a particulate suspension into two-dimensional horizontal and inclined channels. The continuity equation for the fluid and the simplified two-dimensional Navier-Stokes equations are then solved together with a particle concentration equation. This latter equation is formulated by considering the balance between the particle flux due to gravity with the corresponding particle fluxes due to convection and shear-induced diffusion. The resulting coupled system of equations is solved numerically using a specialised finite-difference method. It is found, for the parameter range for flows of proppants in hydraulic fractures, that when the suspension enters the channel with a uniform velocity profile it almost instantaneously becomes parabolic. In addition, the effects of particle sedimentation are most dominant in the entrance region, but further downstream such effects are balanced as shear-induced particle diffusion becomes more important. It is also shown that the suspension flow depends critically on the choice of the parameters used, e.g. the ratio of the particle radius to the height of the channel.
Keywords:suspension flows   shear-induced diffusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号