首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential
Authors:Yu Yang-Xin  Tian Ai-Wei  Gao Guang-Hua
Institution:State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China. yangxyu@mail.tsinghua.edu.cn
Abstract:A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin (BSA) in aqueous electrolyte solution is developed based on the generalized Stokes-Einstein equation which relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is predicted. From the comparison between the predicted and experimental values we found that the sedimentation coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good agreement with available experimental data, while the hard sphere model is unable to describe the behavior of diffusion due to its neglect of the double-layer repulsive charge-charge interaction between BSA molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号