Affiliation: | a Sincrotrone Trieste, Padriciano 99, 34012, Trieste, Italy b IRC in Surface Science, University of Liverpool, Liverpool L69 3BX, UK c Dipartimento di Fisica, Università di Trieste, 34127, Trieste, Italy |
Abstract: | The effect of adsorbate coverage, adsorption sequence and temperature on the structure, composition and reactivity of coadsorbed layers, produced by dissociative adsorption of O2 and H2 at 200 K on a Rh(100) surface, has been studied by combined TPD, XPS and LEED measurements. The emphasis is on the impact of the structure and composition of the mixed O + H layers on the synthesis of hydroxyl and water as a result of the O + H surface reaction. The difference in the O 1s binding energies of adsorbed O (529.9 eV) and OH species (530.8 eV) was used as a fingerprint to monitor the formation of the OH species. The H2O TPD spectra show substantial variations of the desorption temperature range and the amount of water evolved with coadsorbate coverage and structure: from 270 to 350 K and from 0 to 0.08 ML, respectively. It has been found that dense O + H adlayers, where the O coverage is in the range 0.25-0.4 ML, favor the formation of stable OH species. The maximum amount of stable hydroxyl OH species ( 0.16 ML) can be produced by heating of these dense adlayers to 260 K. This results in reordering of the adspecies to form a new O + OH − (2 × 6) structure, where hydroxyls react readily to evolve 0.08 ML of water in a sharp desorption peak at 280 K. The effect of the adlayer density and restructuring on the production of OH and H2O is discussed. |