首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear magnetic field gradients can reduce SAR in flow-driven arterial spin labeling measurements
Authors:Marro Kenneth I  Lee Donghoon  Hyyti Outi M
Affiliation:Department of Radiology, Box 357115, University of Washington, Seattle, WA 98195-7115, USA. marro@u.washington.edu
Abstract:
This work describes how custom-built gradient coils, designed to generate magnetic fields with amplitudes that vary nonlinearly with position, can be used to reduce the potential for unsafe tissue heating during flow-driven arterial spin labeling processes. A model was developed to allow detailed analysis of the adiabatic excitation process used for flow-driven arterial water stimulation with elimination of tissue signal (FAWSETS) an arterial spin labeling method developed specifically for use in skeletal muscle. The model predicted that, by adjusting the amplitude of the gradient field, the specific absorption rate could be reduced by more than a factor of 6 while still achieving effective labeling. Flow phantom measurements and in vivo measurements from exercising rat hind limb confirmed the accuracy of the model's predictions. The modeling tools were also applied to the more widely used continuous arterial spin labeling (CASL) method and predicted that specially shaped gradients could allow similar reductions in SAR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号