首页 | 本学科首页   官方微博 | 高级检索  
     


Monotone nonparametric regression with random design
Authors:C. Durot
Affiliation:(1) Université Paris Sud, Paris, France
Abstract:
In this paper we study the nonparametric least squares estimator of a regression function in a random design setting under the constraint that this function is monotone, say, nonincreasing. The errors are not assumed conditionally i.i.d. given the observation points. In particular, this includes the case of conditional heteroscedasticity and the case of the current status model. The $$
mathbb{L}_p 
$$-error is shown to be of order n p/3 and asymptotically Gaussian with explicit asymptotic mean and variance.
Keywords:asymptotic distribution  Brownian motion with parabolic drift  current status data  least concave majorant  least squares  monotone regression  random design
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号