首页 | 本学科首页   官方微博 | 高级检索  
     


Calculations for a cylindrical electric arc with allowance for energy transfer by radiation with the hydrogen at a pressure of 100 atm
Authors:A. T. Onufriev  V. G. Sevast'yanenko
Affiliation:(1) Moscow, Novosibirsk
Abstract:An approximate method is described for the consideration of energy transfer by radiation during the utilization of real properties of a gas (in particular, the frequency-dependent absorption coefficient under conditions of local thermal equilibrium). With increasing pressure, it becomes necessary to take self-absorption into account over almost the entire frequency spectrum.Calculations are carried out for a wall-stabilized cylindrical electric arc in hydrogen as an example for a pressure of 100 atm and channel radii of 0.3, 1, and 3 cm at values of current strength up to the order of 10 A. The strong effect of radiation on the current-voltage characteristic of the arc, the gas temperature, and the nature of its distribution over the arc radius is demonstrated.The process of energy transfer by radiation plays a significant and sometimes predominant role in the thermal balance of electric arcs with high current strengths [1–9]. Calculations have been performed for cylindrical arcs in atmospheres of argon and hydrogen [5, 7] with allowance for energy transfer by radiation and for atmospheric pressure in which case the gas is essentially transparent to radiation. Approximate estimates were obtained for the self-absorbed portion of the radiation.The role played by radiation increases with increasing current strength, arc radius, and pressure, while self-absorption in this process extends over an increasingly large region of the spectrum. Hence, calculations must be carried out for the arc if conditions are such that the gas in the arc does not transmit radiation.In [10–13], an approximate method was developed for taking into account energy transfer by radiation in the presence of intense selfabsorption as applied to heat transfer problems under conditions of local thermal equilibrium with allowance for the variation of the absorption coefficient as a function of the frequency. The conditions for local thermal equilibrium in an arc passing through an argon or hydrogen atmosphere are fulfilled for pressures greater than atmospheric pressure and for current strengths greater than sim10 A [14–16], The results of [10–12] were used as the foundation for calculations based on an electric arc in argon at atmospheric pressure, under which conditions, self-absorption affects only the transitions to the ground state. The part played by radiation in the heat transfer process is smaller than the part played in the energy transfer by conduction. Calculations confirmed the results of [5, 7].The role of energy transfer by radiation in the energy balance of the arc increases with increasing pressure, while in turn, the role of the continuous spectrum increases for the radiation. The results of calculations performed for a wall-stabilized arc burning in an atmosphere of hydrogen at a pressure of 100 atm are given in the present paper. In this case, almost the entire energy supply is lost by radiation. The approximate method of accounting for energy transfer by radiation is demonstrated by an example.Notation rgr and T gas density and temperature, respectively - u velocity - cp heat capacity of the gas at constant pressure - chi coefficient of thermal conductivity - sgr coefficient of electrical conductivity - x and r cylindrical coordinates - r0 channel radius - I current strength - E electric field strength - ungr° equilibrium value of radiation energy density - ungr value of radiation energy density - ngr radiation frequency - phiv divergence of energy flux density transported by radiation - kngr absorption coefficient - c speed of light - epsivi emissivity of the i-th region of the spectrum
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号