首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bayesian Variable and Transformation Selection in Linear Regression
Abstract:This article suggests a method for variable and transformation selection based on posterior probabilities. Our approach allows for consideration of all possible combinations of untransformed and transformed predictors along with transformed and untransformed versions of the response. To transform the predictors in the model, we use a change-point model, or “change-point transformation,” which can yield more interpretable models and transformations than the standard Box–Tidwell approach. We also address the problem of model uncertainty in the selection of models. By averaging over models, we account for the uncertainty inherent in inference based on a single model chosen from the set of models under consideration. We use a Markov chain Monte Carlo model composition (MC3) method which allows us to average over linear regression models when the space of models under consideration is very large. This considers the selection of variables and transformations at the same time. In an example, we show that model averaging improves predictive performance as compared with any single model that might reasonably be selected, both in terms of overall predictive score and of the coverage of prediction intervals. Software to apply the proposed methodology is available via StatLib.
Keywords:Bayesian model averaging  Change-point transformation  Markov chain Monte Carlo model composition  Model uncertainty  Posterior model probability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号