首页 | 本学科首页   官方微博 | 高级检索  
     检索      

含时Schrödinger方程的高阶辛FDTD算法研究
引用本文:沈晶,沙威,黄志祥,陈明生,吴先良.含时Schrödinger方程的高阶辛FDTD算法研究[J].物理学报,2012,61(19):190202-190202.
作者姓名:沈晶  沙威  黄志祥  陈明生  吴先良
作者单位:1. 安徽大学计算智能与信号处理教育部重点实验室, 合肥 230039;2. 合肥师范学院电子信息工程学院, 合肥 230061;3. 香港大学电机电子工程学院, 香港, 薄扶林道
基金项目:国家自然科学 (批准号: 60931002, 61101064, 61001033)、 安徽省高校自然科学研究重点项目(批准号: KJ2011A242, KJ2011A002)、 安徽省杰出青年基金(批准号: 1108085J01)、 安徽省优秀青年人才基金一般项目(批准号: 2011SQRL130)和安徽省自然科学青年基金(批准号: 10040606Q51)资助的课题.
摘    要:提出了一种新的算法——高阶辛时域有限差分法(SFDTD(3, 4): symplectic finite-difference time-domain)求解含时薛定谔方程.在时间上采用三阶辛积分格式离散, 空间上采用四阶精度的同位差分格式离散, 建立了求解含时薛定谔方程的高阶离散辛框架;探讨了高阶辛算法的稳定性及数值色散性.通过理论上的分析及数值算例表明:当空间采用高阶同位差分格式时, 辛积分可提高算法的稳定度;SFDTD(3, 4)法和FDTD(2, 4)法较传统的FDTD(2, 2)法数值色散性明显改善.对二维量子阱和谐振子的仿真结果表明: SFDTD(3, 4)法较传统的FDTD(2, 2)法及高阶FDTD(2, 4)法有着更好的计算精度和收敛性, 且SFDTD(3, 4)法能够保持量子系统的能量守恒, 适用于长时间仿真.

关 键 词:辛积分  高阶同位差分  薛定谔方程  数值稳定性和色散性
收稿时间:2012-02-06

High-oder symplectic FDTD scheme for solving time-dependent Schrödinger equation
Shen Jing,Sha Wei E. I.,Huang Zhi-Xiang,Chen Ming-Sheng,Wu Xian-Liang.High-oder symplectic FDTD scheme for solving time-dependent Schrödinger equation[J].Acta Physica Sinica,2012,61(19):190202-190202.
Authors:Shen Jing  Sha Wei E I  Huang Zhi-Xiang  Chen Ming-Sheng  Wu Xian-Liang
Institution:1. Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei 230039, China;2. Department of Electronic Engineering, Hefei Normal College, Lianhua Road, Hefei 230601, China;3. Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Abstract:Using three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD(3, 4)) scheme is proposed to solve the time-dependent Schrödinger equation. First, high-order symplectic framework for discretizing the Schrödinger equation is described. The numerical stability and dispersion analyses are provided for the FDTD(2, 2), FDTD(2, 4) and SFDTD(3, 4) schemes. The results are demonstrated in terms of theoretical analyses and numerical simulations. The spatial high-order collocated difference reduces the stability that can be improved by the high-order symplectic integrators. The SFDTD(3, 4) scheme and FDTD(2, 4) approach show better numerical dispersion than the traditional FDTD(2, 2) method. The simulation results of a two-dimensional quantum well and harmonic oscillator strongly confirm the advantages of the SFDTD(3, 4) scheme over the traditional FDTD(2, 2) method and other high-order approaches. The explicit SFDTD(3, 4) scheme, which is high-order-accurate and energy-conserving, is well suited for long-term simulation.
Keywords:symplectic integrator  high-order collocated difference  Schrö  dinger equation  numerical stability and dispersion
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号