首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究
引用本文:包凌东,韩敬华,段涛,孙年春,高翔,冯国英,杨李茗,牛瑞华,刘全喜.纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究[J].物理学报,2012,61(19):197901-197901.
作者姓名:包凌东  韩敬华  段涛  孙年春  高翔  冯国英  杨李茗  牛瑞华  刘全喜
作者单位:1. 四川大学电子信息学院,成都,610064
2. 西南科技大学极端条件物质特性实验室,绵阳,621010
3. 成都精密光学工程研究中心,成都,610041
4. 西南技术物理研究既,成都,610041
基金项目:国家自然科学基金重大项目(批准号: 60890203)、 西南科技大学极端条件物质特性实验室开放基金(批准号: 11zxjk08)和四川大学青年教师科研启动基金(批准号: 2009SCU1108)资助的课题.
摘    要:采用波长为355 nm的纳秒紫外重复脉冲激光对单晶硅片进行了盲孔加工实验, 观测了随脉冲增加激光烧蚀硅片的外观形貌和盲孔孔深、孔径的变化规律, 并对紫外激光辐照硅片的热力学过程进行了分析. 研究结果表明:紫外激光加工硅盲孔是基于热、力效应共同作用的结果, 热效应会使得硅材料熔化、气化甚至发生电离产生激光等离子体,为材料的去除提供条件;激光等离子体冲击波以及高温气态物向外膨胀会对熔化材料产生压力致使其向外喷射,为重复脉冲的进一步烧蚀提供了条件;力效应主要沿着激光传输的方向,垂直于硅表面,使得去除部位主要集中在孔的深度方向,达到较高的孔径比,实验观察孔径比可达8:1;此外,激光等离子体的产生也阻止了激光对靶面的作用,加之随孔深的增加激光发生散焦,使得烧蚀深度有一定的限制,实验观察烧蚀脉冲个数在前100个时加工效率较高.

关 键 词:激光烧蚀  单晶硅  盲孔  激光等离子体冲击波
收稿时间:2012-01-03

Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser
Bao Ling-Dong,Han Jing-Hua,Duan Tao,Sun Nian-Chun,Gao Xiang,Feng Guo-Ying,Yang Li-Ming,Niu Rui-Hua,Liu Quan-Xi.Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser[J].Acta Physica Sinica,2012,61(19):197901-197901.
Authors:Bao Ling-Dong  Han Jing-Hua  Duan Tao  Sun Nian-Chun  Gao Xiang  Feng Guo-Ying  Yang Li-Ming  Niu Rui-Hua  Liu Quan-Xi
Institution:1. College of Electronics & Information Engineering, Sichuan University, Chengdu 610064, China;2. Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;3. Chengdu Fine Optical Engineering Research Center, Chengdu 610041, China;4. Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract:The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology,the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon surface, so the removal parts are distributed mainly along the depth direction of the hole, reaching a high aperture ratio, which is up to 8:1 in our experiments. In addition, the laser-induced plasma also prevents the effect of laser on the target surface, and with the increase of hole depth, laser defocusing occurs. The two aspects finally restrict the ablation depth. The results shows that in the process of laser irradiation on the material, the ablation efficiency is much higher when the former 100 pulses arrived than the sequent laser pulses.
Keywords:laser ablation  silicon  blind hole  laser-induced plasma shock wave
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号