Connecting cluster dynamics and protein folding |
| |
Authors: | R.S. Berry A. Fernandez K. Kostov |
| |
Affiliation: | (1) The University of Chicago, Chicago, Illinois 60637, USA, US;(2) Instituto de Matematica, Universidad Nacional del Sur, Bahia Blanca, Argentina, AR |
| |
Abstract: | The relaxation dynamics of clusters can be interpreted in terms of the topographies of their potential surfaces. Systems with short-range potentials have sawtooth-like potential surfaces with small drops in energy from one local minimum to the next and few-body motions as the clusters move from one minimum to another; such systems readily take on amorphous structures. These are called “glass-formers". Systems with long-range forces have potentials whose topographies are like rough staircases, with some large drops in energy from one minimum to the next; their well-to-well passages involve very collective motions and such systems are excellent structure-seekers. They find their way to well-ordered, highly selective structures under almost all circumstances. These characteristics generalize to describe the potential surfaces and folding behavior of polypeptides and proteins. The forces are effective long-range forces due to the polymer chain. Staircase topographies emerge both from direct sampling of potential surfaces and from the inversion of the kinetics generated by a much more aaabstract topological model, from which folding pathways can be inferred. Received 4 December 2000 |
| |
Keywords: | PACS. 36.40.-c Atomic and molecular clusters – 87.10.+e General theory and mathematical aspects – 87.15.-v Biomolecules: structure and physical properties |
本文献已被 SpringerLink 等数据库收录! |
|