首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth of Sb(2)E(3) (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process
Authors:Zheng Xiuwen  Xie Yi  Zhu Liying  Jiang Xuchuan  Jia Yunbo  Song Wenhai  Sun Yuping
Institution:Structure Research Laboratory and Laboratory of NanoChemistry and NanoMaterials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
Abstract:A novel solvent-relief-self-seeding (SRSS) process was applied to grow bulk polygonal tubular single crystals of Sb(2)E(3) (E = S, Se), using SbCl(3) and chalcogen elements E (E = S, Se) as the raw materials at 180 degrees C for 7 days in ethanol solution. The products were characterized by various techniques, including X-ray powder diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), electronic diffraction (ED), and X-ray photoelectron spectra (XPS). The calculated electrical resistivities of the tubular single crystals in the range 20-320 K were of the order of 10(5)-10(6) Omega cm for Sb(2)S(3) and 10(3)-10(4) Omega cm for Sb(2)Se(3), respectively. The studies of the optical properties revealed that the materials formed had a band gap of 1.72 eV for Sb(2)S(3) and 1.82 eV for Sb(2)Se(3), respectively. The optimal reaction conditions for the growth of bulk tubular single crystals were that the temperature was not lower than 180 degrees C and the reaction time was not shorter than 7 days. The possible growth mechanism of tubular crystals was also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号