Abstract: | The elegant approach of in situ deposition technique was used for the synthesis of nano CaCO3. the nanosize of particles was confirmed by the X‐ray diffraction (XRD) technique. Differential scanning calorimetry (DSC) was used for determination of the enthalpy. The nano CaCO3 polypropylene (PP) composites were prepared by taking 2 and 10 wt % of different nanosizes (21–39 nm) of CaCO3. Conversion of the α phase to β was observed in the case of 2 wt % of a 30‐nm sized amount of CaCO3 in a PP composite. The decrement in ΔH and percent crystallinity, as well as the increment in melt temperature were recorded for 6 wt % nano CaCO3 with a decrease in nanosize from 39 to 21 nm. The increment in tensile strength with an increase in the amount of nano CaCO3 was observed, and the lower particle size showed greater improvement. The improvement in thermal and mechanical properties is because of the formation of a greater number of small spherulites uniformly present in the PP matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 107–113, 2004 |