首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oblique wave scattering by an impermeable ocean-bed of variable depth in a two-layer fluid with ice-cover
Authors:S Mohapatra  S N Bora
Institution:1. Department of Mathematics, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
2. Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
Abstract:Within the framework of linearized theory, obliquely incident water wave scattering by an uneven ocean-bed in the form of a small bottom undulation in a two-layer fluid, where the upper layer has a thin ice-cover while the lower one has the undulation, is investigated here. In such a two-layer fluid, there exist two modes of time-harmonic waves—the one with lower wave number propagating just below the ice-cover and the one with higher wave number along the interface. An incident wave of a particular mode gets reflected and transmitted by the bottom undulations into waves of both the modes. Assuming irrotational motion, a perturbation technique is employed to solve the first-order corrections to the velocity potentials in the two-layer fluid by using Fourier transform appropriately and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom undulation. For a sinusoidal bottom topography, these coefficients are depicted graphically against the wave number. It is observed that when the oblique wave is incident on the ice-cover surface, we always find energy transfer to the interface, but for interfacial oblique incident waves, there are parameter ranges for which no energy transfer to the ice-cover surface is possible.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号