摘 要: | 相邻障碍物的分割是无人驾驶领域的技术难点,低线激光雷达点云稀疏,无法聚类远距离物体,但激光雷达线束越多越昂贵。为了实现低成本聚类分割相邻障碍物,实验场景选取常用交通场景对象相邻的人/人、人/车,提出了一种基于多帧融合的相邻障碍物分割方法。基于惯性测量单元、激光雷达融合多帧点云,解决了低线激光雷达因分辨率低而无法聚类远距离相邻行人的问题。提出改进的欧式聚类,加入自适应阈值和向量角度约束两个新的分割标准,提高相邻障碍物的分割效果。实验结果表明,该方法具有成本低、聚类精准等特点,与单帧传统欧式聚类算法相比,该方法针对相邻障碍物分割的准确度提升约30.7%,对低线激光雷达在障碍物聚类以及后续的检测具有一定参考意义。
|