首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intra-puff CO and CO2 measurements of cigarettes with iron oxide cigarette paper using quantum cascade laser spectroscopy
Authors:Crawford Danielle R  Parrish Milton E  Gee Diane L  Harward Charles N
Institution:Philip Morris USA, Research Center, P.O. Box 26583, 4201 Commerce Road, Richmond, VA 23234, USA.
Abstract:The objective of this research was to apply Fourier transform infrared spectroscopy (FTIR) and tunable infrared laser differential absorption spectroscopy (TILDAS) for measuring selected gaseous constituents in mainstream (MS) and sidestream (SS) smoke for experimental cigarettes designed to reduce MS CO using iron oxide cigarette papers. These two complimentary analytical techniques are well suited for providing per puff smoke deliveries and intra-puff evolution profiles in cigarette smoke respectively. The quad quantum cascade (QC) laser high resolution infrared spectroscopy system has the necessary temporal and spectral resolution and whole smoke analysis capabilities to provide detailed information for CO and CO(2) as they are being formed in both MS and SS smoke. The QC laser system has an optimal data rate of 20 Hz and a unique puffing system, with a square wave shaped puff, that allows whole smoke to enter an 18 m, 0.3 L multi-pass gas cell in real time (0.1s cell response time) requiring no syringe or Cambridge filter pad. Another similar multi-pass gas cell with a 36 m pathlength simultaneously monitors the sidestream cigarette smoke. The smoke from experimental cigarettes manufactured with two types of iron oxide papers were compared to the smoke from cigarettes manufactured similarly without iron oxide in the paper using both instrument systems. The delivery per puff determined by the QC laser method agreed with FTIR results. MS CO intra-puff evolution profiles for iron oxide prototype cigarettes demonstrated CO reduction when compared to cigarettes without iron oxide paper. Additionally, both CO and CO(2) intra-puff evolution profiles of the cigarettes with iron oxide paper showed a significant reduction at the initial portion of the 2 s puff not observed in the non-iron oxide prototype cigarettes. This effect also was observed for ammonia and ethylene, suggesting that physical parameters such as paper porosity and burn rate are important. The SS CO and CO(2) deliveries for the experimental cigarettes evaluated remained unaffected. The iron oxide paper technology remains under development and continues to be evaluated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号