首页 | 本学科首页   官方微博 | 高级检索  
     


Exploiting scale-free information from expression data for cancer classification
Authors:Antonov Alexey V  Tetko Igor V  Kosykh Denis  Surmeli Dmitrij  Mewes Hans-Werner
Affiliation:GSF National Research Center for Environment and Health, Institute for Bioinformatics, Ingolst?dter Landstrasse 1, D-85764 Neuherberg, Germany. antonov@gsf.de
Abstract:
Most studies concerning expression data analyses usually exploit information on the variability of gene intensity across samples. This information is sensitive to initial data processing, which affects the final conclusions. However expression data contains scale-free information, which is directly comparable between different samples. We propose to use the pairwise ratio of gene expression values rather than their absolute intensities for a classification of expression data. This information is stable to data processing and thus more attractive for classification analyses. In proposed schema of data analyses only information on relative gene expression levels in each sample is exploited. Testing on publicly available datasets leads to superior classification results.
Keywords:Cancer classification   Expression data   Microarray data   Scale-free schema   Genes pairwise ratio
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号