首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monolayers of mono- and bipolar palmitic acid derivatives
Authors:Xiuli Yue  Paul Steffen  Bodo Dobner  Gerald Brezesinski and Helmuth M  hwald
Institution:

aMax Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Golm/Potsdam, Germany

bInstitute of Pharmaceutical Chemistry, Martin-Luther University, D-06120, Halle/S., Germany

Abstract:Monopolar and bipolar derivatives of hexadecanoic acid (HA), 16-hydroxyhexadecanoic acid (HHA), methyl hexadecanoate (MH) and methyl 16-hydroxyhexadecanoate (MHH) have been investigated on pure water and NaCl solutions with different ion concentrations (1, 2 and 3 mol l−1). Surface pressure area isotherms show that HA forms a fully condensed monolayer on pure water at 20 °C E. Teer, C.M. Knobler, S. Siegel, D. Vollhardt, G. Brezesinski, J. Phys. Chem., B104, 43, 2000, pp. 10053–10058] whereas in the case of the corresponding bipolar HHA the hydroxy group as a second polar moiety leads to a destabilization of the monolayer. The presence of two relatively strong hydrophilic polar groups at opposite ends of the chain prevents the formation of condensed films. The esterification of the carboxyl group (MH) changes the phase sequence from L2–Ov–LS for HA to L2–LS. Inserting a hydroxy group at the end of the chain (MHH) shifts the liquid expanded/liquid condensed (LE/LC) phase transition to higher surface pressures but does not change the phase sequence, however it increases the chain tilt. The pressure of the first-order phase transition LE/LC is strongly temperature dependent for MH, while the transition pressure of MHH is almost temperature independent. The phase behavior of MHH and MH on pure water was further studied by surface potential, Brewster angle microscopy (BAM), fluorescence microscopy and grazing incidence X-ray diffraction (GIXD) measurements. The LC domains of MHH on pure water are so small that no inner texture can be observed by BAM in contrast to the LC domains of MH. 3M NaCl in the subphase does not change the MH textures, while it increases the size of the LC domains of MHH. The influence of the hydroxy group on the monolayer behavior is discussed in terms of the formation of hydrogen bonds. The presence of NaCl in the subphase expands the monolayers. The results obtained are explained by changes in monolayer–monolayer and monolayer–subphase interactions.
Keywords:Mono- and bipolar amphiphiles  Monolayers  Isotherms  BAM  GIXD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号