首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Potentiometric Ag+ Sensors Based on Conducting Polymers: A Comparison between Poly(3,4‐ethylenedioxythiophene) and Polypyrrole Doped with Sulfonated Calixarenes
Abstract:Potentiometric Ag+ sensors were prepared by galvanostatic electropolymerization of 3,4‐ethylenedioxythiophene (EDOT) and pyrrole (Py) on glassy carbon electrodes by using sulfonated calixarenes as doping ions. Poly(3,4‐ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) doped with p‐sulfonic calix4]arene (C4S), p‐sulfonic calix6]arene (C6S) and p‐sulfonic calix8]arene (C8S) were compared. PEDOT and PPy doped with poly(styrene sulfonate) (PSS) were also included for comparison. The analytical performance of the conducting polymer‐based Ag+ sensors was studied by potentiometric measurements. All conducting polymer and dopant combinations showed sensitivity and selectivity to Ag+ compared to several alkali, alkaline‐earth, and transition‐metal cations. The type of the conducting polymer used for the fabrication of the electrodes was found to have a more significant effect on the selectivity of the electrodes to Ag+ than the ring size of the sulfonated calixarenes used as dopants. Selected conducting polymer‐based sensors were studied by cyclic voltammetry (CV) and energy dispersive analysis of X‐rays (EDAX) measurements. Results from the EDAX measurements show that both PEDOT‐ and PPy‐based membranes accumulate silver.
Keywords:Silver ion‐selective electrode  Conducting polymers  PEDOT  Polypyrrole  Sulfonated calixarenes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号