Abstract: | Organic/inorganic hybrid films of poly(new fuchsin) and phosphomolybdate (PMo12O ) have been prepared in acidic aqueous solutions. These new combination films are stable, electrochemically active, and can be produced on glassy carbon, platinum, gold, and transparent semiconductor tin oxide electrodes. An electrochemical quartz crystal microbalance along with cyclic voltammetry and UV‐visible absorption spectroscopy were used to study the in situ growth of the hybrid films. The hybrid poly(new fuchsin) and PMo12O films showed four obvious redox couples, and when transferred to various acidic aqueous solutions, the formal potentials of the four redox couples were found to be pH dependent. The electrocatalytic reduction of ClO , BrO , IO , SO , S2O , H2O2, and NO by the hybrid poly(new fuchsin) and PMo12O films was achieved in acidic aqueous solutions. In an aqueous solution at pH 1.5, a hybrid poly(new fuchsin) and PMo12O film showed a higher electrocatalytic reduction activity of IO than BrO or ClO , and the order of electrocatalytic activity was IO >BrO >ClO . The order of electrocatalytic reduction of SO , S2O , H2O2, and NO by hybrid poly(new fuchsin) and PMo12O films in an aqueous solution at pH 1.5 was NO >H2O2>S2O and SO . The electrocatalytic reactions of the poly(new fuchsin) and PMo12O films were investigated using the rotating ring‐disk electrode method. |