首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical self-assembly of actin bundle networks: gels with surface protein skin layers
Authors:Hirst Linda S  Pynn Roger  Bruinsma Robijn F  Safinya Cyrus R
Affiliation:Materials Department, Physics Department, and Molecular, Cellular, University of California, Santa Barbara, 93106, USA.
Abstract:The networklike structure of actin bundles formed with the cross-linking protein alpha-actinin has been investigated via x-ray scattering and confocal fluorescence microscopy over a wide range of alpha-actinin/F-actin ratios. We describe the hierarchical structure of bundle gels formed at high ratios. Isotropic actin bundle gels form via cluster-cluster aggregation in the diffusion-limited aggregation regime at high alpha-actinin/actin ratios. This process is clearly observed by confocal fluorescence microscopy. Polylysine is investigated as an alternative bundling agent in the high-ratio regime and the effects of F-actin length are also discussed. One particularly fascinating aspect of this system is the presence of a structured skin layer at the gel/water interface. Confocal microscopy has elucidated the full three-dimensional structure of this layer and revealed several interesting morphologies. The protein skin layer is a micron-scale structure composed of a directed network of bundles and exhibits flat, crumpled, and tubelike shapes. We show that crumpling of the skin layer results from stresses due to the underlying gel. These biologically based geometric structures may detach from the gel, demonstrating potential for the generation of biological scaffolds with defined shapes for applications in cell encapsulation and tissue engineering. We demonstrate manipulation of the skin layer, producing hemispherical structures in solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号