首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mass spectrometric fragmentation of isomeric 2-alkyl-substituted 1,3-indandiones and 3-alkylidenephthalides: a seven-step consecutive isomerization of regular and distonic molecular radical cations
Authors:Dietmar Kuck
Abstract:The electron impact-induced fragmentation of 2,2-dimethyl- and 2-ethyl-1,3-indandione, 1 and 2, and their isomers, 3-isopropylidene- and 3-propylidenephthalide, 3 and 4, respectively, was studied in detail by mass-analysed ion kinetic energy (MIKE) and collision-induced dissociation (CID-MIKE) spectrometry, including 2H and 13C. labelled analogues of 1 and 2. In all regimes of internal energy, the molecular ions 1+. ? 4+. interconvert by up to seven consecutive, reversible isomerization steps prior to the main fragmentation processes, viz. loss of CH3. and C2H4. 1,3-Indandione and 3-methylenephthalide ions with identical alkylidene moieties (i.e. 1+.?3+. and 2+.?4+.) equilibrate rapidly and completely prior to fragmentation, whereas these pairs of isomers interconvert only slowly via a five-step rearrangement of the indandione ions 1+.?2+.. Distinct from the behaviour of simpler ionized carbonyl species, a 1,2-C shift of a (formally) neutral carbonyl group is found to occur along with that of a protonated one. Also distinct from simpler cases, methyl loss does not take place from the ionized enol intermediates formed within the interconversion 1+.?2+. of the diketone ions but rather from the n-propylidenephthalide ions 4+.. This follows from CID-MIKE spectrometry of the M ? CH3]+ ions of 1–4 and two reference C10H7O2+ (m/z 159) ions of authentic structures (protonated 2-methylene-1,3-indandione and protonated 1,4-naphthoquinone). The characteristic CID fragmentation of the C10H7O2+ ions is rationalized. Finally, the multistep isomerization of ionized 1,3-indandiones apparently also extends to higher homologues e.g. 5+. from 2-ethyl-2-methyl-1,3-indandione (5) and 6+. from 2,2-diethyl-1,3-indandione (6)]: the ionized phthaloyl group of 1,3-indandione radical cations 1+., 2+., 5+. and 6+., originally attached with its two acyl functionalities to the same carbon of the aliphatic chain, performs, in fact, a ‘multi-step migration’.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号