Abstract: | ![]() The Feynman path integral method is applied to the many-electron problem of quantum chemistry. We begin with investigating the partition function of the system in question; then, “a classical path of electron” that corresponds to the Hartree–Fock approximation is obtained by minimizing the thermodynamic potential of the system with respect to the electron coordinate. The next-order approximation is obtained by evaluating the deviation from this classical path, which is approximately written by an easily integrable Gaussian integral. The result is expected to be the random-phase approximation. As numerical examples, the hydrogen molecule and butadiene are treated. © 1994 John Wiley & Sons, Inc. |