Abstract: | The study deals with the effect of an applied transverse magnetic field on the dynamics and parameters of the focused and expanded plasma in a coaxial discharge. The experimental results were found with a 3 kJ Plasma focus device of a Mather geometry. The discharge takes place in hydrogen gas with base pressure of 0.5 Torr. The experiments are conducted with a 10 kV bank voltage, which corresponds to 100 kA peak discharge current with rise time 8 μs. Helmholtz magnetic coils are placed outside the expansions chamber to produce a transverse magnetic field with intensity 280 G perpendicular to the plasma expanded from the coaxial electrodes. The investigations have shown that the plasma flow along the expansion chamber axis is restricted when applying the externally transverse magnetic field and the maximum axial velocity of the expanded plasma is decreased by 33%. X-ray probe has been used to measure the focused plasma electron temperature (Te). The experimental results and the calculations showed that Te is decreased from 2.2 keV to 800 eV with the application of a transverse magnetic field. The expanded plasma electron temperature and density have been measured by an electric double probe, the results cleared that the expanded plasma electron temperature is decreased by 2.6 times while its density is increased by 9 times, when a transverse magnetic field is applied. |