首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Why define atoms in real space?
Authors:Richard F W Bader
Abstract:The physics of a system is determined by a variation of the action integral, i.e., by a variation of the space–time volume integral of the Lagrange function. If one demands that the properties of an atom in a molecule be derived from physics, the atom must generate its own space–time volume, requiring that its boundaries be defined in real space. The variations in the action are related to the actions of generators of infinitesimal unitary transformations. In the general case, the action integral is altered by generators acting in both the spacelike and timelike surface bounding the space–time volume, whereas for a total isolated system, the physics is totally determined by their action in just the spacelike surfaces at the two time endpoints. It is shown and illustrated for a one-dimensional system that the definition of an atom corresponds to the possibility of choosing a subsystem in such a way that the contributions to the change in action resulting from the evolution in time of its spatial boundaries vanishes identically. The properties of these subsystems and of the total system of which they are a part are, therefore, determined by one and the same action principle. This choice of subsystem corresponds to the possibility of augmenting the Lagrange function by the divergence of the gradient of the electron density a step that, while leaving the equations of motion unchanged, modifies the generating operators in the required manner. © 1994 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号