Abstract: | Coupled and decoupled Taylor-Galerkin algorithms are considered for viscoelastic flow and a model problem—transient startup Poiseuille flow in a channel under a fixed pressure gradient. All algorithms reproduce the steady-state solutions and are stable at high elasticity numbers (E). For a fixed mesh, the coupled and decoupled versions (TGC and TGD) give exceptional time-accuracy at low elasticity numbers [to within O(1%) at E = 1] and reasonable accuracy at high elasticity numbers [to within O(10%) at E = 10, 100]. By definition, the decoupled false-transient scheme (TGF), which uses different time scales for velocity and stress time stepping, provides a poor transient history. Where the main requirement is to compute a steady-state algorithm efficiency is crucial. The TGF scheme attains a steady state between six to eight times faster than does the TGC scheme, and the latter is over twice as fast as the TGD form. © 1994 John Wiley & Sons, Inc. |