首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyisobutylene-containing block polymers by sequential monomer addition. X. Synthesis of poly(α-methylstyrene-b-isobutylene-b-α-methylstyrene) thermoplastic elastomers
Authors:Yasuo Tsunogae  J P Kennedy
Abstract:Preparatory to triblock synthesis experiments, the cationic polymerization of α-methylstyrene (αMeSt) was investigated using the 2-chloro-2,4,4-trimethylpentane (TMPCI)/TiCl4 initiating system in the presence of triethylamine (Et3N) as electron donor (ED) and CH3Cl/n-hexane mixed solvent in the ?80 to ?40°C range. Conversions are influenced by temperature, TiCl4], Et3N], and αMeSt]. The polymerization of αMeSt is living at ?80°C: Both termination and chain transfer to monomer are frozen out, however, initiation is slow relative to propagation. Highly syndiotactic (>94%) Pα Mest was obtained. At?60deg;C initiator efficiency is ca. 100%, but termination becomes evident. Et3N may act both as Ed and as proton scavenger. Novel poly(α-methystyrene-b-isobutylene-b-α-methylstyrene) (PαMeSt-PIB-PαMeSt) triblocks have been synthesized by adding αMeSt to biliving polyisobutylene carbocations (⊕PIB⊕) in the ?80 to ?40°C range. The effects of temperature, solvent polarity, and Et3N] on the block copolymerization have been investigated. At ?80°C, the rate of crossover from ⊕PIB⊕ to αMeSt is lower than that of propagation of PαMeSt⊕, so that the triblock is contaminated by PIB and PIB-b-PαMeSt. At ?60°C, crossover occurs preferentially. The rate of propagation relative to that of crossover is also reduced by lowering the solvent polarity and increasing the Et3N]. High crossover efficiency and blocking efficiency can be obtained under optimum blocking conditions. The triblocks are novel thermoplastic elastomers (TPEs). © 1994 John Wiley & Sons, Inc.
Keywords:thermoplastic elastomers  poly (-methylstyrene-b-isobutylene-b--methylstyrene)  triblock copolymer  living carbocationic polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号