首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet
Institution:Department of Chemical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Abstract:This paper is concerned with the investigation of the performance of different turbulence models in the numerical prediction of transient flow caused by a confined submerged jet. Several widely used models, i.e., the standard kε, RNG kε, low Reynolds number kε models and the differential Reynolds stress model, as included in CFD codes, were compared with each other for a two-dimensional, incompressible, turbulent jet flow and with reported experimental data. A flapping oscillation was predicted regardless of the model used. A chosen Strouhal (St) number definition brought the fundamental frequencies from both the experiments and computations into close proximity. However, different turbulence models have exhibited quite different behaviours in terms of the frequency and regularity of the oscillation and in terms of the scale and duration of the vortices generated. All versions of the kε model yielded regular oscillations, which agree with experimental observations. On the other hand, the Reynolds stress (RS) model produced a complex pattern but a slower dissipation of vortices. In addition, some aspects of gridding and inflow representation are also discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号