首页 | 本学科首页   官方微博 | 高级检索  
     


Implicit standard Jacobi gives high relative accuracy
Authors:Froilán M. Dopico  Plamen Koev  Juan M. Molera
Affiliation:1.Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Departamento de Matemáticas,Universidad Carlos III de Madrid,Leganés,Spain;2.Department of Mathematics,San Jose State University,San Jose,USA;3.Departamento de Matemáticas,Universidad Carlos III de Madrid,Leganés,Spain
Abstract:We prove that the Jacobi algorithm applied implicitly on a decomposition A = XDX T of the symmetric matrix A, where D is diagonal, and X is well conditioned, computes all eigenvalues of A to high relative accuracy. The relative error in every eigenvalue is bounded by O(ek(X)){O(epsilon kappa (X))} , where e{epsilon} is the machine precision and k(X) o ||X||2·||X-1||2{kappa(X)equiv|X|_2cdot|X^{-1}|_2} is the spectral condition number of X. The eigenvectors are also computed accurately in the appropriate sense. We believe that this is the first algorithm to compute accurate eigenvalues of symmetric (indefinite) matrices that respects and preserves the symmetry of the problem and uses only orthogonal transformations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号