首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Buckling of a flush-mounted plate in simple shear flow
Authors:H Luo  C Pozrikidis
Institution:1. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093-0411, USA
Abstract:The buckling of an elastic plate with arbitrary shape flush-mounted on a rigid wall and deforming under the action of a uniform tangential load due to an overpassing simple shear flow is considered. Working under the auspices of the theory of elastic instability of plates governed by the linear von Kármán equation, an eigenvalue problem is formulated for the buckled state resulting in a fourth-order partial differential equation with position-dependent coefficients parameterized by the Poisson ratio. The governing equation also describes the deformation of a plate clamped around the edges on a vertical wall and buckling under the action of its own weight. Solutions are computed analytically for a circular plate by applying a Fourier series expansion to derive an infinite system of coupled ordinary differential equations and then implementing orthogonal collocation, and numerically for elliptical and rectangular plates by using a finite-element method. The eigenvalues of the resulting generalized algebraic eigenvalue problem are bifurcation points in the solution space, physically representing critical thresholds of the uniform tangential load above which the plate buckles and wrinkles due to the partially compressive developing stresses. The associated eigenfunctions representing possible modes of deformation are illustrated, and the effect of the Poisson ratio and plate shape is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号