Abstract: | The hydrogen atom transfer reaction between substituted methanes (substituents; H, F, CH3, OH, and CN) and methyl radicals was studied by 4-31G (UHF) calculations using the MINDO/3 geometries. The transition state structures and energy barriers were determined, and variations of the transition state and of the reactivity due to the change of substituent were analyzed based on the potential energy surface characteristics. It was concluded that the reaction is of the SH2 type with a backside attack, and transition state variations are controlled by the vector sum of the component parallel to (Hammond rule) and one perpendicular to the reaction coordinate (anti-Hammond rule). It was also concluded that the most important factor influencing the reactivity is bond dissociation energy effect directly related to the spin transfer of the radical species, and the polar effect need not be overemphasized. |