Abstract: | We report a study of the conditions of the phosphorylation reaction for the preparation of aromatic polyamides using the Higashi reaction medium. For poly(p-phenylene terephthalamide) (PPD-T), the optimum conditions are: reaction temperature, 115°C; monomer concentration, C = 0.083 mol/L; and ratio of triphenyl phosphite (TPP) to monomer, 2.0. These optimum conditions produce PPD-T having ηinh = 6.2 dL/g. At temperatures of 120°C and above PPD-T precipitates from the reaction mixture, leading to lower molecular weights. At lower temperatures the reaction mixture gels, and the gel time decreases with increasing reaction temperature. However, polycondensation continues in the gel state. Monomer concentrations C = 0.10 mol/L and above produce precipitation and yield polyamides of lower molecular weight. For the preparation of poly(p-benzamide) (PBA), the optimum ratio of TPP to monomer is 0.6 for either p- aminobenzoic acid or N-4-(4′-aminobenzamido)benzoic acid. In the former case the inherent viscosity of polymer prepared at 115°C showed little dependence upon the concentration of the monomer. The highest value, ηinh = 1.8 dL/g, was obtained with C = 0.40 mol/L and a TPP/monomer ratio of 0.6. However, for the same TPP/monomer ratio, the monomer containing a preformed amide linkage, N-4-(4′-aminobenzamido)benzoic acid, gave PBA with ηinh = 4.6 dL/g when the monomer concentration is 0.33 mol/L. This is the highest value reported for PBA using the phosphorylation reaction. In A?A + B?B polycondensation, examples in which one of the monomers contained one or two preformed amide linkages produced polyamides having ηinh = 7.8 and 8.9 dL/g, respectively. |