Abstract: | ![]() The pressure gradient method using velocity components and components of a pressure gradient as dependent variables has been modified to solve incompressible Newtonian fluid flow problems numerically. Applying this modified method to unsteady-state development of flow in a circular cavity shows that, at least for the case of a low Reynolds number flow, relative errors produced by the proposed method are smaller for most time intervals than those produced by the primitive velocity-pressure variable method and by the standard pressure gradient method. Also it is found that the modified and standard pressure gradient methods can be applied to the unsteady circular cavity flow at a moderate Reynolds number of at least up to 200. |