首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear Cusped Caustics for Dispersive Waves
Authors:Richard Haberman  Ren-ji Sun
Abstract:A multiple-scale perturbation analysis for slowly varying weakly nonlinear dispersive waves predicts that the wave number breaks or folds and becomes triple-valued. This theory has some difficulties, since the wave amplitude becomes infinite. Energy first focuses along a cusped caustic (an envelope of the rays or characteristics). The method of matched asymptotic expansions shows that a thin focusing region with relatively large wave amplitudes, valid near the cusped caustic, is described by the nonlinear Schrödinger equation (NSE). Solutions of the NSE are obtained from an asymptotic expansion of an equivalent linear singular integral equation related to a Riemann-Hilbert problem. In this way connection formulas before and after focusing are derived. We show that a slowly varying nearly monochromatic wave train evolves into a triple-phased slowly varying similarity solution of the NSE. Three weakly nonlinear waves are simultaneously superimposed after focusing, giving meaning to a triple-valued wave number. Nonlinear phase shifts are obtained which reduce to the linear phase shifts previously described by the asymptotic expansion of a Pearcey integral.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号