首页 | 本学科首页   官方微博 | 高级检索  
     

水稻糙米粗蛋白近红外光谱定量分析模型的优化研究
引用本文:李君霞,闵顺耕,张洪亮,严衍录,罗长兵,李自超. 水稻糙米粗蛋白近红外光谱定量分析模型的优化研究[J]. 光谱学与光谱分析, 2006, 26(5): 833-837
作者姓名:李君霞  闵顺耕  张洪亮  严衍录  罗长兵  李自超
作者单位:中国农业大学农业部作物基因组学与遗传改良重点实验室,北京市作物遗传改良重点实验室,北京,100094;河南省农业科学院粮食作物研究所,河南,郑州,450002;中国农业大学理学院,北京,100094;中国农业大学农业部作物基因组学与遗传改良重点实验室,北京市作物遗传改良重点实验室,北京,100094;中国农业大学信息学院,北京,100094
基金项目:科技部科研项目 , 科技部科研项目 , 高比容电子铝箔的研究开发与应用项目
摘    要:筛选有代表性的191份糙米样品为试材,其中42份来自国家稻种资源库、149份来自水旱稻杂交产生的DH系,蛋白质含量变幅5.90%~14.50%,采用偏最小二乘法(PLS)建立模型,并构造模型的评价参数——目标函数[R/(1+RMSECV)], 同时借助校正集和验证集两个载荷向量得分二维空间投影图,对近红外定量模型进行评价和优化。结果表明: 在5 000~9 000 cm-1范围内,预处理方法为一阶导数,校正模型和外部检验的目标函数值分别为0.701和0.687;两载荷向量得分直观分布图显示样品的聚类结果与目标函数筛选结果一致,也进一步验证了目标函数是模型评价和优化的有效指标。

关 键 词:水稻糙米  偏最小二乘法(PLS)  蛋白质含量  目标函数  模型优化
文章编号:1000-0593(2006)05-0833-05
收稿时间:2005-07-27
修稿时间:2005-12-12

The PLS Calibration Model Optimization and Determination of Rice Protein Content by Near-Infrared Reflectance Spectroscopy
LI Jun-xia,MIN Shun-geng,ZHANG Hong-liang,YAN Yan-lu,LUO Chang-bing,LI Zi-chao. The PLS Calibration Model Optimization and Determination of Rice Protein Content by Near-Infrared Reflectance Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2006, 26(5): 833-837
Authors:LI Jun-xia  MIN Shun-geng  ZHANG Hong-liang  YAN Yan-lu  LUO Chang-bing  LI Zi-chao
Affiliation:1. Key Lab of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100094, China2. The College of Science, China Agricultural University, Beijing 100094, China3. The College of information,China Agricultural University,Beijing 100094, China4. Crop Genetics Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Abstract:A hundred and ninety one representative brown rice samples from the Chinese Rice Genebank and the DH population derived from the cross of japonica upland rice IRAT109 with paddy rice Yuefu were selected for this study. Their protein content range was 5.90%-14.50%. Near-infrared diffusive spectroscopy (NIDRS) and partial least square (PLS) were used to determine protein content with different wavelength ranges and data preprocessing methods for regression and information extraction. The object function R/(1 RMSECV) of quantitative model was defined, and the samples of calibration and validation tests were classified by projective distribution of PLS loadings. These methods were applied to the optimization of the calibration model. It is demonstrated that the calibration model developed by the spectral data pretreatment of the first derivative standard vector normalization with the same spectral region (5 000-9 000 cm~ -1 ) resulted in the best determination of protein content in brown rice when the maximum values of the object function were reached. The maximum values of the object functions of calibration and validation sets were 0.701 and 0.687, respectively. Projective distributions of PLS loadings were used to validate the models, and the result was the same as that of validating model by object function R/(1 RMSECV).
Keywords:Brown rice  Partial least-squares regression (PLS)  Protein content  Optimization object function  Model optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号