首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip
Authors:Peng Chen  Pu Chen  Xiaojun Feng  Wei Du  Bi-Feng Liu
Institution:1. Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
Abstract:Intercellular Ca2+ waves are propagation of Ca2+ transients among cells that could be initiated by chemical stimulation. Current methods for analyzing intercellular Ca2+ waves are difficult to realize localized chemical stimulations upon the target cell without interfering with adjacent contacting cells. In this paper, a simple and flexible microfluidic method was developed for investigating the intercellular communication of Ca2+ signals. A cross-patterned microfluidic chip was designed and fabricated with polydimethylsiloxane as the structural material. Localized chemical stimulation was achieved by a new strategy based on hydrodynamic gating technique. Clusters of target cells were seeded at the location within 300 μm downstream of the intersection of the cross-shaped microchannel. Confined lateral molecular diffusion largely minimized the interference from diffusion-induced stimulation of adjacent cells. Localized stimulation of the target cell with adenosine 5′-triphosphate successfully induced the propagation of intercellular Ca2+ waves among a population of adjacent contacting cells. Further inhibition studies verified that the propagation of calcium signals among NIH-3 T3 cells was dependent on direct cytosolic transfer via gap junctions. The developed microfluidic method provides a versatile platform for investigating the dynamics of intercellular communications.
Fig
Analysis of intercellular communication by flexible hydrodynamic gating
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号