首页 | 本学科首页   官方微博 | 高级检索  
     

Eu3+或Tb3+掺杂Y2O3纳米材料紫外激发光谱
引用本文:孟庆裕,陈宝玖,赵晓霞,王晓君,许武. Eu3+或Tb3+掺杂Y2O3纳米材料紫外激发光谱[J]. 发光学报, 2008, 29(1): 107-113
作者姓名:孟庆裕  陈宝玖  赵晓霞  王晓君  许武
作者单位:1. 中国科学院长春光学精密机械与物理研究所, 激发态物理重点实验室, 吉林, 长春, 130033;2. 中国科学院研究生院, 北京, 100049;3. 大连海事大学, 物理系, 辽宁, 大连, 116026;4. 中国科学技术大学, 安徽, 合肥, 230026
摘    要:
采用燃烧法制备了不同Ln3+(Ln=Eu或Tb)掺杂浓度和不同平均粒径的Y2O3:Ln纳米晶体粉末和体材料样品。研究发现随着粒径的减小,Y2O3:Eu电荷迁移带的位置发生红移;并且,由于存在于近表面低结晶度环境中的Eu3+数量的增加,小粒径样品(5nm)的电荷迁移带还向长波方向发生了明显的展宽。实验中还观察到Y2O3:Tb纳米晶激发谱中4f5d(4f8→4f75d1)跃迁吸收对应激发峰(带)的谱线形状随样品粒径变化存在较大的差异,这是由于Tb3+存在于近表面的低结晶度和颗粒内部的高结晶度两种不同环境中,Tb3+的4f5d跃迁在两种环境中对应的吸收峰位置不同,当样品粒径发生变化时Tb3+处于两种环境中的比例随之变化,造成相应吸收跃迁对应的激发峰(带)强度发生变化,并改变了激发谱的谱线形状。实验中还发现,随着Tb3+(或Eu3+)浓度的减小,Y2O3基质激子跃迁吸收的激发峰对比4f5d跃迁(或电荷迁移带)激发峰的相对强度随之增强。

关 键 词:Y2O3Ln(Ln=Eu或Tb)纳米材料  紫外激发  表面  激子吸收
文章编号:1000-7032(2008)01-0107-07
收稿时间:2007-08-25
修稿时间:2007-11-24

Study on UV Excitation Spectra of Eu3+ or Tb3+ doped Y2O3 Nanomaterials
MENG Qing-yu,CHEN Bao-jiu,ZHAO Xiao-xia,WANG Xiao-jun,XU Wu. Study on UV Excitation Spectra of Eu3+ or Tb3+ doped Y2O3 Nanomaterials[J]. Chinese Journal of Luminescence, 2008, 29(1): 107-113
Authors:MENG Qing-yu  CHEN Bao-jiu  ZHAO Xiao-xia  WANG Xiao-jun  XU Wu
Affiliation:1. Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China;3. Department of Physics, Dalian Maritime University, Dalian 116026, China;4. University of Science and Technology of China, Hefei 230026, China
Abstract:
Y2O3:Ln nanocrystals with different Ln3+(Ln=Eu or Tb) doping concentrations and average sizes were prepared by chemical self-combustion. And the bulk materials of corresponding doping concentrations were obtained by annealing at high temperature. The emission spectra, excitation spectra and X-ray diffraction spectra of Y2O3:Ln nanocrystals and bulk materials were measured. The research indicated that under the effect of quantum confinement effect and surface effect, the Y2O3:Eu charge transfer band red-shifted clearly while the particle size decreased. Furthermore, the charge transfer band of the small size particles (8 nm) clearly broadened towards the long wavelength, this was attributed to the increase of the amount of Eu3+ ions existing in low crystallization degree environment close to the surface. The study also indicated that the shape of excitation peaks (bands) corresponding to the 4f5d transition absorption of Tb3+ in the excitation spectra of Y2O3:Tb nanocrystals changed a lot with the variety of the particle size. This is because that the Tb3+ ions exist in two very different local environments:the low crystallization degree environment close to the surface and the high crystallization degree environment inner the particles. The absorption peaks of 4f5d transition were different in the two environments. The Tb3+ ions ratio in the two environments changs with the variety of the particle size. So the intensity of corresponding excitation peaks (bands) changed and the shapes of the excitation spectra changed. By comparing the excitation spectra of different doping concentrations, it can be found that with the increase of Tb3+(or Eu3+) concentrations, the relative strength of the Y2O3 exciton transition absorption excitation peak to the 4f5d transition (or charge transfer band) excitation peak decreased. The excitation efficiency of Y2O3 exciton absorption band is very low when the doping concentrations of the luminescent centers were higher. But the excitation efficiency of Y2O3 exciton absorption band increased when the doping concentrations were quite low.
Keywords:Y2O3Ln(Ln=Eu or Tb)nanomaterials  UV excitation  surface  exciton absorption
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《发光学报》浏览原始摘要信息
点击此处可从《发光学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号