Field emission characteristics of thin-metal-coated nano-sheet carbon films |
| |
Authors: | Guang-Rui Gu Toshimichi Ito |
| |
Affiliation: | a Department of Physics, College of Science, Yanbian University, Yanji 133002, China b Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan |
| |
Abstract: | Nano-sheet carbon films (NSCFs) coated with very thin (≈5-nm-thick) metal layers were fabricated on Si wafer chips by means of quartz-tube-type microwave-plasma chemical-vapour-deposition method with hydrogen-methane gas mixture and an electron beam evaporation method. Field emission (FE) current densities obtained at a macroscopic average electric field, E, of ≈10 V/μm changed from 13 mA/cm2 for NSCF with no coated metal to 1.7, 0.7 and 30 mA/cm2 for Ti-, Al- and Au-coated NSCFs, respectively, while the threshold E varied from 4.4 V/μm for the former one to 5.3, 5.4 and 2.0 V/μm for the corresponding latter ones, respectively. As the FE currents of Au-coated NSCFs tended to be saturated in a higher E region, compared to those of NSCFs with no coated metal, no simple Fowler-Nordheim (F-N) model is applicable. A modified F-N model considering statistic effects of the FE tip structures and a space-charge-limited-current effect is successfully applied to an explanation for the FE data observed in the low and high E regions. |
| |
Keywords: | Nano-sheet carbon films Field emission Microwave plasma CVD Space-charge-limited-current |
本文献已被 ScienceDirect 等数据库收录! |
|