首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses
Authors:Christian SymietzErhard Lehmann  Renate GildenhaarRobert Koter  Georg BergerJörg Krüger
Institution:BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin, Germany
Abstract:Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm2) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20-40 μm thickness. The remaining laser fluence at the ceramic-metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm2) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm2, only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants.
Keywords:Bone implant  Bioceramic coating  Titanium  Calcium phosphate  Femtosecond laser
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号