Abstract: | The stability of gravitational-capillary flow in a square cavity with isothermal vertical and adiabatic horizontal boundaries is investigated. The region of stable regimes in the Grashof number-Marangoni number plane is determined for a fluid with a Prandtl number equal to 0.02. In [1] the stability of steady-state thermogravitational convection regimes in a laterally heated square cavity was numerically investigated. The Galerkin method with a system of coordinate functions constructed as proposed in [2] was used to solve the system of equations of free convection in the Oberbeck-Boussinesq approximation. Below, the variant of the Galerkin method described in [2] is used to investigate the stability of steady-state regimes of free convection flow developing under the combined influence of thermogravitational and thermocapillary forces.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 8–13, March–April, 1990. |