首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical mass shifts in resonance ejection experiments in the quadrupole ion trap
Authors:Li Hongyan  Plass Wolfgang R  Patterson Garth E  Cooks R Graham
Institution:Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.
Abstract:Chemical mass shifts were measured in a Paul ion trap operated in the mass-selective instability scan with resonance ejection using a custom-built instrument. These shifts, which can be as much as 2%, decrease with increasing endcap electrode separation owing to changes in the higher order contributions to the electric field. They also decrease with decreasing helium buffer gas pressure. Both of these effects are analogous to those found with boundary ejection. This suggests that the previously proposed chemical mass shift mechanism based on compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures holds true also for resonance ejection. The influence of the resonance frequency on chemical mass shifts was also investigated and it is shown that at certain working points (values of the Mathieu parameter q(z) and a(z)) non-linear resonances greatly reduce the ejection delay for all ions, regardless of their chemical structures, and thus reduce the magnitude of the chemical mass shift. Energetic collisions leading to dissociation can take place at an earlier stage during the ejection process in the mass analysis scan when using resonance ejection compared with boundary ejection. This leads to even larger chemical mass shifts of fragile ions in resonance ejection. Increasing the resonance voltage amplitude can enhance this effect. The chemical mass shifts of fragile ions increase with increase in the resonance voltage amplitude, whereas negligible changes occur for structurally stable ions.
Keywords:chemical mass shift  Paul ion trap  quadrupole electric fields  resonance ejection  collision‐induced dissociation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号