首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles
Authors:Gaza R  Yukihara E G  McKeever S W S
Institution:

Department of Physics, Arkansas-Oklahoma Center for Space and Planetary Sciences, Oklahoma State University, Stillwater, OK 74078-3072, USA

Abstract:The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelarator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and LuxelTM dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/u) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/μm in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (ηHCP,γ) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or LuxelTM) and the luminescence method used to define the signal—i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.
Keywords:Optically stimulated luminescence  Thermoluminescence  Aluminum oxide  Heavy charged particle
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号