Dithienobenzothiadiazole‐Based Conjugated Polymer: Processing Solvent‐Relied Interchain Aggregation and Device Performances in Field‐Effect Transistors and Polymer Solar Cells
DTfBT‐Th3, a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of −5.27 eV. Due to strong interchain aggregation, DTfBT‐Th3 can not be well dissolved in chlorobenzene (CB) and o‐dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT‐Th3 displays a field‐effect hole mobility of 0.55 cm2 V−1 s−1 when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm2 V−1 s−1). In DTfBT‐Th3‐based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150−300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB‐processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a “wet control” process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.