首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica
Authors:Liu Jinshui  Du Xuezhong  Zhang Xianfeng
Institution:Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, China.
Abstract:The controlled release of drugs by biostimuli is highly desirable under physiological conditions for their potential use in advanced applications. The enzyme-inspired controlled release of cucurbituril nanovalves by using magnetic mesoporous silica nanoparticles (MSNs) in near-neutral aqueous solutions is reported for the first time. The encirclement of cucurbit7]uril (CB7]) onto the protonated 1,4-butanediamine stalks tethered to the external surfaces of superparamagnetic Fe(3) O(4) -embedded mesoporous silica particles leads to tight blocking of the nanopores. The supramolecular nanovalves are activated by the enzymatic decarboxylation products of lysine, cadaverine (in the protonated form), which has a high affinity for CB7], so that the encapsulated guest molecules, calcein, in the nanopores are released into the bulk solution. The release of calcein can be controlled in small portions on command by alternating changes in enzymatic decarboxylation products and CB7]. The amino acid derived polyamines have long been associated with cell growth and cancers. The guest molecules released from the delivery system of magnetic MSNs can act not only on sensing probes for levels of decarboxylases and polyamines, but also on efficacious drugs to specific tissues and cells for regulation of polyamine synthesis.
Keywords:cucurbiturils  enzyme mimics  mesoporous materials  molecular devices  supramolecular chemistry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号