首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical Simulation of Riblet Controlled Spatial Transition in a Zero-Pressure-Gradient Boundary Layer
Authors:Stephan Klumpp  Matthias Meinke  Wolfgang Schröder
Institution:1.Institute of Aerodynamics,RWTH Aachen University,Aachen,Germany
Abstract:To analyze the fundamental physical mechanism which determines the damping effect of a riblet surface on three-dimensional transition several numerical simulations of spatial transition in a flat plate zero-pressure-gradient boundary layer above a riblet wall are performed in this study. Two types of forced transition scenarios are investigated. The first type of transition is defined by K-type transition induced by a dominant two-dimensional Tollmien–Schlichting (TS) wave and a weak spanwise disturbance. The second type of transition is purely excited by two oblique waves. By a qualitative analysis of the occurring maximum wall-normal and spanwise velocity components and the Fourier modes of the disturbances the two-dimensional TS waves are found to be amplified by riblets, whereas three-dimensional structures, i.e., Λ-, hairpin, and streamwisely aligned vortices, are damped. At oblique transition the breakdown to turbulence is delayed by the riblets compared to transition on a clean surface. The investigation of the near wall flow structure reveals secondary flows induced by the riblets and reduced wall normal ejections as well as a reduced downwash.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号