YF3:Ln3+ (Ln = Ce, Tb, Pr) submicrospindles: hydrothermal synthesis and luminescence properties |
| |
Authors: | Peng Chong Li Chunxia Li Guogang Li Suwen Lin Jun |
| |
Affiliation: | State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China. |
| |
Abstract: | YF(3):Ln(3+) (Ln = Ce, Tb, Pr) microspindles were successfully fabricated by a facile hydrothermal method. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), lifetimes, photoluminescence (PL) and low-voltage cathodoluminescence (CL) were used to characterize the resulting samples. The lengths and diameters of YF(3):0.02Ce(3+) microspindles are around 760 nm and 230 nm, respectively. Adding dilute acid and trisodium citrate (Cit(3-)) are essential for obtaining YF(3) microspindles. A potential formation mechanism for YF(3) microspindles has been presented. PL spectroscopy investigations show that YF(3):Ce(3+) and YF(3):Tb(3+) microcrystals exhibit the characteristic emission of Ce(3+) 5d → 4f and Tb(3+ 5)D(4)→(7)F(J) (J = 6-3) transitions, respectively. In addition, the energy transfer from Ce(3+) to Tb(3+) was investigated in detail for YF(3):Ce(3+), Tb(3+) microspindles. Under the excitation of electron beams, YF(3):Pr(3+) show quantum cutting emission and YF(3):Ce(3+), Tb(3+) phosphors exhibit more intense green emission than the commercial phosphor ZnO:Zn. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|