首页 | 本学科首页   官方微博 | 高级检索  
     检索      


White noise nonlinear system analysis in nuclear magnetic resonance spectroscopy
Authors:B Blümich
Institution:

Max-Planck-Institut für Polymerforschung, Postfach 3148, D-6500 Mainz, FRG

Abstract:Nonlinear noise excitation in nuclear magnetic resonance is a form of nonlinear spectroscopy which exploits the nonlinear susceptibilities in a very direct way. The nonlinear susceptibilities are defined by perturbation theory in the frequency domain. In nonlinear system analysis, on the other hand, the system response is described by a Volterra series in the time domain. The kernels of the Volterra functionals carry the information about the system and are to be determined by experiment.The series expansion of a molecular, atomic or nuclear system response is derived in quantum mechanics by time dependent perturbation theory, leading to a Volterra series with time ordered, triangular kernels. The kernels are multi-dimensional products of decaying exponentials, which describe coherence decays of particular density matrix elements. The Fourier transforms of the triangular Volterra kernels are the susceptibilies, which are formally identical in NMR spectroscopy and nonlinear optical spectroscopy. The nonlinear susceptibilities are multi-dimensional spectra, which in NMR spectroscopy reveal the spin communication pathways. These are established by various forms of single quantum coherence connectivities, such as indirect coupling, chemical exchange, cross-relaxation, dipolar and quadrupolar coupling.If the functionals of the Volterra series are orthogonalized with respect to Gaussian white noise excitation, the Wiener series results. The Wiener kernels can be derived by multi-dimensional cross-correlation of the system response with different powers of the Gaussian white noise excitation.Cross-correlation of the transverse magnetization response to noise excitation in NMR leads to multi-dimensional time functions, the Fourier transforms of which closely resemble the nonlinear susceptibilities. The cross-correlation spectra differ from the susceptibilities in the governing Liouvillean and the dynamic density matrix, which are affected by saturation for continuous excitation. Cross-correlation spectra and susceptibilities converge for vanishing excitation power. Therefore the cross-correlation spectra are referred to as stochastic susceptibilities.In stochastic NMR spectroscopy only odd order susceptibilities exist for transverse magnetization. The first nonlinear order is the third, and the nonlinear spectral information is derived from the third order susceptibility. Higher order susceptibilities are not feasible to derive from experimental data. An important share of the nonlinear information is found on the six subdiagonal 2D cross-sections through the third order susceptibility. These cross-sections arise in three pairs, which carry distinct information, separated according to longitudinal magnetization and population effects, zero quantum coherences, and double quantum coherences.In practice a nonlinear 3D spectrum is computed from experimental data by an algorithm in the frequency domain, which yields access to selected regions in the 3D spectrum. This spectrum is the symmetrized stochastic third order susceptibility. All its sub-diagonal 2D cross-sections are equivalent. They are the average of the six different sub-diagonal 2D cross-sections through the asymmetric third order susceptibility.The stochastic excitation technique in NMR is characterized by several unique attributes. (1) There is no minimum time for a data acquisition cycle, so that, at the expense of signal-to-noise ratio, strong samples can be investigated faster with stochastic NMR than with pulsed FT NMR. (2) Stochastic excitation tests the sample extensively, and measures a maximum amount of information in a single experiment. This feature is of particular interest for investigation of short-lived samples and of samples with little a priori information. (3) An experiment with stochastic excitation is simple to perform, but the data processing is more complex than in FT spectroscopy. (4) The nonlinear information about spin communication pathways is derived for individual frequency regions only, which are identified in the stochastic ID spectrum. This information is located primarily on the sub-diagonal 2D cross-sections through the third order susceptibility. (5) Stochastic NMR spectra derived from random noise excitation are contaminated by systematic noise. In the sub-diagonal 2D cross-sections the noise is reduced by filtering and symmetrization during data processing. (6) Sub-diagonal 2D cross-sections are sensitive to experimental phase distortions in one direction only. They are readily adjusted in phase with the same parameters as the ID spectrum. (7) Stochastic multi-dimensional spectra can be computed at variable resolution from one and the same set of raw data.So far stochastic NMR spectroscopy is not applied routinely in analytical spectroscopy. More practical experience is needed to evaluate its merits in comparison with Fourier transform NMR.Stochastic excitation is distinguished from continuous wave and sparsely pulsed excitation by low input power in connection with large bandwidth. This important property cannot be exploited in high resolution NMR in liquids, because excitation power is not a restricting factor in this case. The situation is different in NMR imaging, where large field gradients require large bandwidths and the excitation power becomes a point of concern. For this reason stochastic RF excitation is being investigated in NMR imaging.The multi-dimensional cross-correlation functions obtained from random noise excitation generally are contaminated by systematic noise. The occurrence of systematic noise can be avoided if pseudo-random excitation is used in combination with a transformation of the system response to obtain the kernels. This technique is used successfully in Hadamard spectroscopy, where the linear Volterra kernel is the Hadamard transform of the linear response functional. Nonlinear transformations(220,221) for retrieval of nonlinear kernels have not yet been realized in NMR spectroscopy.The cross-correlation technique underlying the data evaluation in stochastic nonlinear system analysis is equivalent to interferometry in optical spectroscopy. The Michelson interferometer is the most prominent optical correlator. The time resolution of the kernels derived by cross-correlation is determined by the inverse bandwidth of the excitation. With the Michelson interferometer a time resolution of 10−14 s is achieved in IR spectroscopy. Since the IR correlogramm is Fourier transformed for spectral analysis, the time resolution cannot be exploited otherwise. For analysis of fast time dependent processes a two-dimensional interferometer should be constructed, which performs a 2D cross-correlation of the system response to two in general different noise inputs. One input pumps the time dependent process, the other is used to investigate the time dependence spectroscopically. This technique is introduced by the name of ‘two-dimensional interferometry’. It uses low excitation power, but provides high time resolution at large response energy. Related work is pursued in nonlinear optical spectroscopy with incoherent excitation. In this area the use of broad band lasers is investigated for generation of echoes and for correlation based measurements of relaxation times.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号